

Tigeoptics

Product Guide 2020

Issue 1

Contents

Company Overview	4
Available Detections	5
Detection Ranges Summary	6
HALO Series	7
Spark Series	17
T-I Max Series	20
CO-rekt Series	22
Prismatic—Multispecies Detection	24
ALOHA H ₂ O Series	25
Integration Solutions	26
Software Products	27
Featured Services & Upgrades	28
Tiger Optics Service	29
Overview of Cavity Ring-Down Spectroscopy (CRDS)	30

Tiger Optics, LLC 275 Gibraltar Road Horsham, PA 19044

www.tigeroptics.com sales@tigeroptics.com

Phone: +1 (215) 656 4000 Fax: +1 (215) 343 7168

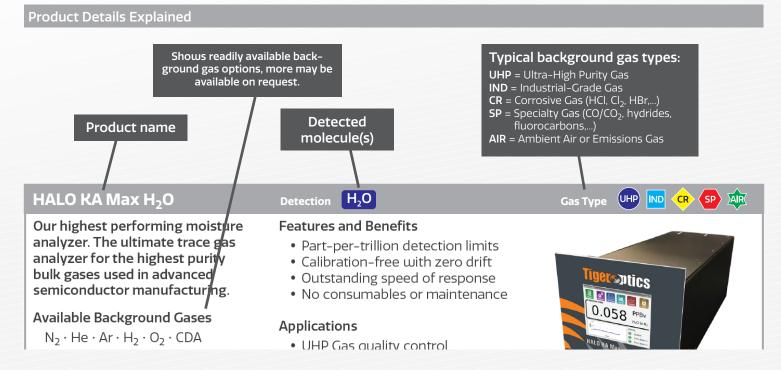
Company Overview

Founded in 2001, Tiger Optics has been the preferred provider for high-performance, laser-based gas analyzers to advance industrial standards and enable cutting-edge research. By leveraging the expertise of scientists, engineers and industry specialists, we offer advanced total solutions, field support, analyzer training, and advice to help customers improve yields and reduce costs. By creating out-of-the-box solutions that deliver fast, reliable and stable measurements, Tiger Optics supports continuous innovation for gas & chemical production, semiconductor fabrication, and many other markets.

Analyze with Ease™

Our products and solutions are at work all over the world. We focus on innovative and differentiated solutions and technologies that add high value to our end-users applications and processes. We are committed to operational excellence and innovation that help our customers create the products and services that make our lives better. Our businesses are global in nature with meaningful presence in developed as well as emerging markets. Our continued strategic and global expansion offers significant future opportunities across our value chain for our customers, our channel partners and our suppliers.

Since 2018, Tiger Optics is part of Process Insights Holdings.



Available Detections

Analyzer Series							Dete	ction						
	H ₂ O	O ₂	NH ₃	CH ₄	HF	HCI	CO	$\left[CO_{2}\right]$	CH ₂ O	H ₂ S	H ₂	C_2H_2	N_2O	D ₂ O HDO
HALO Max QCL NEW!							✓							
HALO KA Max	✓		✓	✓										
HALO KA	✓													
HALO OK		\checkmark												
HALO 3	✓		✓	✓	✓	✓		✓	✓					✓
HALO LP	✓													
HALO RP	✓				✓									
HALO QRP	✓													
HALO H ₂ O in N ₂ O	✓													
HALO H2											✓			
Spark / Spark+	✓			✓			✓	✓				✓		
T-I Max			✓		√	√								
T-I Max CEM			√	√	√	√	✓			✓				
CO-rekt	✓			✓			✓	✓						
Prismatic 2	✓		√	√			✓	✓		√			√	
ALOHA+ H ₂ O	✓													

Additional detections are available on request. Please contact us for more information.

Detection Ranges Summary

						Appro											
Analyzer	Detection	23,000 ppm	21,000 ppm	2300 ppm	⊭100 ppm	⊭30 ppm	12 10 ppm	ı₂3 ppm	ı⊵1 ppm	20.3 ppm	2 0.1 ppm	230 ppb	⊭10 ppb	ı23 ppb	⊭1 ppb	20.3 ppb	ı20.1 p
HALO Max QCL CO	CO																
HALO KA Max H ₂ O	H ₂ O																
HALO KA Max NH₃	NH_3																ĺ
HALO KA Max CH ₄	CH ₄																
HALO KA H ₂ O	H ₂ O	Ē	Ē														
HALO OK [†]	O ₂	Ē	Ē			Ē											
HALO 3 H ₂ O	H ₂ O																
HALO 3 NH ₃ [†]	NH ₃																
HALO 3 CH ₄	CH ₄	Ė	Ė			•										-	
HALO 3 HF	HF	-	-				-										-
HALO 3 HCl	HCl	:	:							1							
		Ė	Ė							+					_	-	
HALO 3 CO ₂ †	CO ₂																
HALO 3 CH ₂ O	CH ₂ O	-	į							-							
HALO 3 D ₂ O/HDO	D ₂ O & HDO														_		
HALO LP H ₂ O	H ₂ O																
HALO RP H ₂ O	H ₂ O																
HALO RP HF	HF																
HALO QRP [‡]	H ₂ O																
HALO H ₂ O in N ₂ O	H_2O					:										-	
HALO H2	H_2																
Spark H ₂ O	H ₂ O									i							
Spark H ₂ O in CO ₂	H ₂ O																
Spark CH ₄	CH ₄																
Spark CO / Spark+ CO	CO																
Spark CO ₂																	
	CO ₂																
Spark C ₂ H ₂	C ₂ H ₂																
T-I Max NH ₃	NH ₃																
Γ-I Max HF	HF																
Γ-I Max HCl	HCl																
Γ-I Max CEM NH ₃	NH_3																
Γ-I Max CEM CH ₄	CH ₄																
Γ-I Max CEM HF	HF																
Γ-I Max CEM HCl	HCl																
Γ-I Max CEM CO	CO																
Γ-I Max CEM H ₂ S	H_2S																
CO-rekt CO	CO																
CO-rekt CO ₂	CO ₂																
						-											
CO-rekt H ₂ O [†]	H ₂ O																
CO-rekt CH ₄ [†]	CH ₄									-							
Prismatic 2	H_2O																
up to 4 detections per unit)	NH_3																
	CH ₄																
	CO																
	CO_2																
	H ₂ S																
	N ₂ O																
ALOHA+ H ₂ O	H_2O																

[‡]Range depends on sample pressure (example given for 10 Torr)

HALO Max OCL CO NEW!

This QCL-based system allows for fast & continuous real-time measurements, eliminating batch processing techniques commonly found with GCs. Additionally, QCL-CRDS eliminates the need for regular calibration and provides the most sensitive CO measurement with the lowest operating cost.

Available Background Gases

 $N_2 \cdot He \cdot Ar \cdot O_2$

Specifications*

Detection	Range	LDL (3σ/24h)
CO in N ₂	0 – 0.4 ppm	200 ppt
CO in He	0 – 0.4 ppm	200 ppt
CO in Ar	0 – 0.4 ppm	200 ppt
CO in O ₂	0 – 0.4 ppm	200 ppt

*Preliminary specifications, may be subject to change

Detection

Features and Benefits

- Part-per-trillion detection limits
- Calibration-free with zero drift
- Outstanding speed of response
- Fast, real-time measurements no batch processing
- No consumables or maintenance
- · No expensive carrier gas required

Applications

- UHP Gas quality control
- Semiconductor bulk gas

Communication Interfaces

Ethernet, USB, RS-232, RS-485. 4-20mA analog, Modbus TCP (optional)

Gas Type

Options & Accessories

Gas Type

• Serani Max interface software

HALO KA Max H₂O

Our highest performing moisture analyzer. The ultimate trace gas analyzer for the highest purity bulk gases used in advanced semiconductor manufacturing.

Available Background Gases

 $N_2 \cdot He \cdot Ar \cdot H_2 \cdot O_2 \cdot CDA$

Select Specifications

(see **Product Brochure** for more)

Detection	Range	LDL*
H_2O in N_2	0 – 5 ppm	100 ppt
H ₂ O in He	0 – 1 ppm	100 ppt
H_2O in H_2	0 – 4 ppm	100 ppt
H_2O in O_2	0 – 2.5 ppm	100 ppt
H ₂ O in CDA	0 – 4 ppm	100 ppt

*The LDL is defined as 3σ over 24h or the H₂O drydown limit, whichever is higher.

H₂O Detection

Features and Benefits

- Part-per-trillion detection limits
- Calibration-free with zero drift
- Outstanding speed of response
- No consumables or maintenance

Applications

- UHP Gas quality control
- Semiconductor bulk gas

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4-20mA analog, Modbus TCP (optional)

Options & Accessories

Serani Max interface software

HALO KA Max NH₃

Our highest performing ammonia analyzer. The ultimate trace gas analyzer for the highest purity bulk gases used in advanced semiconductor manufacturing.

Available Background Gases

 N_2

Specifications

Detection	Range	LDL (3σ/24h)
NH_3 in N_2	0 – 7 ppm	100 ppt

Detection

Gas Type

Features and Benefits

- Part-per-trillion detection limits
- Calibration-free with zero drift
- Outstanding speed of response
- No consumables or maintenance

Applications

- UHP Gas quality control
- Semiconductor bulk gas

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4-20mA analog, Modbus TCP (optional)

Options & Accessories

• Serani Max interface software

See Product Brochure for more details

HALO KA Max CH₄

Our highest performing methane analyzer. The ultimate trace gas analyzer for the highest purity bulk gases used in advanced semiconductor manufacturing.

Available Background Gases

 $N_2 \cdot He \cdot Ar \cdot H_2 \cdot O_2$

Specifications

Detection	Range	LDL (3σ/24h)
CH ₄ in N ₂	0 – 8 ppm	500 ppt
CH ₄ in He	0 – 5 ppm	400 ppt
CH ₄ in Ar	0 – 7 ppm	450 ppt
CH ₄ in H ₂	0 – 8 ppm	500 ppt
CH ₄ in O ₂	0 – 7 ppm	500 ppt

Detection

Features and Benefits

- Part-per-trillion detection limits
- Calibration-free with zero drift
- Outstanding speed of response
- No consumables or maintenance

Applications

- UHP Gas quality control
- Semiconductor bulk gas

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4-20mA analog, Modbus TCP (optional)

Options & Accessories

Serani Max interface software

HALO KA H₂O

Detection H₂O

Gas Type

The state-of-art trace moisture analyzer for high purity bulk and specialty gases used in semiconductor manufacturing and other high-purity applications.

Available Background Gases

 $N_2 \cdot He \cdot Ar \cdot H_2 \cdot O_2 \cdot CDA \cdot CO \cdot$ $CO_2 \cdot GeH_4 (mix) \cdot COS \cdot Ne \cdot Kr \cdot Xe \cdot$ $Cl_2 \cdot HCl \cdot HBr \cdot SF_6 \cdot NF_3 \cdot C_xF_y$

Select Specifications

(see **Product Brochure** for more)

Detection	Range	LDL (3σ/24h)
H_2O in N_2	0 – 20 ppm	300 ppt
H ₂ O in He	0 – 4 ppm	100 ppt
H_2O in H_2	0 – 16 ppm	200 ppt
H_2O in O_2	0 – 10 ppm	150 ppt
H ₂ O in CO ₂	0 – 25 ppm	800 ppt

Features and Benefits

- Part-per-trillion detection limits
- Calibration-free with zero drift
- Fast speed of response
- Large selection of gas matrices
- · No consumables or maintenance

Applications

- UHP Gas quality control
- Semiconductor bulk gas
- Industrial gas QC
- High-Purity CO₂
- Etch and cleaning gases
- Fluorinated gases

Communication Interfaces

Ethernet, USB, RS-232, RS-485. 4-20mA analog, Modbus TCP (optional)

Options & Accessories

Gas Type

- Serani Max interface software
- Speed+ performance upgrade
- Corrosion-resistant model
- Environmental enclosure.

See Product Brochure for more details

IND

HALO OK

The world's only all-optical ultratrace oxygen analyzer. Ideal addition to HALO KA and HALO KA Max analyzers for purity monitoring of bulk gases used in semiconductor manufacturing.

Available Background Gases

 $N_2 \cdot He \cdot Ar \cdot H_2 \cdot CO_2$

Specifications

De	etection	Range*	LDL (3σ/24h)
02	in N ₂	0 – 2.5 ppm	200 ppt
02	in He	0 – 0.5 ppm	50 ppt
02	in Ar	0 – 1 ppm	90 ppt
02	in H ₂	0 – 2 ppm	150 ppt
02	in CO ₂ †	0 – 5 ppm	5000 ppt

- *Higher range model available
- †Special configuration required, must be specified at time of order.

Features and Benefits

- Part-per-trillion detection limits
- Calibration-free with zero drift
- Outstanding speed of response
- No false spiking or false positives

Applications

Detection

- UHP Gas quality control
- Semiconductor bulk gas
- Oxygen analysis in CO₂
- Fuel-cell hydrogen analysis

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4-20mA analog, Modbus TCP (optional)

Options & Accessories

- Serani Max interface software
- Requires H₂ utility gas

HALO 3 H₂O

Our most versatile moisture analyzer, with low-ppb detection limits, excellent range, and a large selection of background gases. The HALO 3 is the moisture analyzer of choice in many industries.

Available Background Gases

 $N_2 \cdot He \cdot Ar \cdot H_2 \cdot O_2 \cdot CDA \cdot CO \cdot$ $CO_2 \cdot SO_2 \cdot COS \cdot Ne \cdot Kr \cdot Xe \cdot Cl_2 \cdot$ $HCI \cdot HBr \cdot SF_6 \cdot NF_3 \cdot C_x F_v$

Select Specifications

(see **Product Brochure** for more)

Detection	Range	LDL (3σ/24h)
H_2O in N_2	0 – 20 ppm	1.2 ppb
H ₂ O in He	0 – 4 ppm	0.25 ppb
H_2O in H_2	0 – 16 ppm	1.0 ppb
H_2O in O_2	0 – 12 ppm	0.7 ppb
H_2O in CO_2	0 – 25 ppm	2 ppb

Features and Benefits

- Part-per-billion detection limits
- Calibration-free with zero drift
- Fast speed of response
- Large selection of gas matrices
- · No consumables or maintenance

Applications

- UHP Gas quality control
- Semiconductor bulk gas
- Industrial gas QC
- Air separation units
- Fluorinated gases
- Gas standard preparation
- Gas-cooled nuclear reactors

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4-20mA analog, Modbus TCP (optional)

Gas Type

Options & Accessories

- Serani Max interface software
- Speed+ performance upgrade
- Corrosion-resistant model
- Environmental enclosure

See Product Brochure for more details

HALO 3 NH₃

This analyzer offers a variety of ranges for ammonia analysis in bulk gases, plus an "N2O model" for analysis of NH₃ in pure nitrous oxide.

Available Background Gases

 $N_2 \cdot H_2 \cdot CO_2 \cdot N_2O$

Specifications

Detection	Range	LDL (3σ/24h)
$\mathrm{NH_3}$ in $\mathrm{N_2}^*$	0 – 35 ppm	2.5 ppb
NH ₃ in H ₂ *	0 – 30 ppm	2.0 ppb
NH_3 in CO_2	0 – 30 ppm	2.5 ppb
NH ₃ in N ₂ O [†]	0 – 200 ppm	8 ppb/40 ppb

*Higher and lower ranges available [†]Available with "N₂O model", lower LDL requires vacuum pump

Detection **Features and Benefits**

NH₃

- Part-per-billion detection limits
- Calibration-free with zero drift
- Fast speed of response
- No consumables or maintenance
- Multiple detection ranges available

Applications

- UHP Gas quality control
- Industrial gas QC
- Fuel-cell hydrogen analysis
- Gas standard preparation

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4-20mA analog, Modbus TCP (optional)

Options & Accessories

- Serani Max interface software
- Speed+ performance upgrade
- Environmental enclosure
- Vacuum pump may be required for N₂O model

HALO 3 CH₁.

Methane is a key indicator for hydrocarbon impurities in gases. This analyzer is designed to measure CH₄ down to low ppb levels to ensure bulk gases and standard cylinders are free from harmful hydrocarbons.

Available Background Gases

 $N_2 \cdot He \cdot Ar \cdot H_2 \cdot O_2$

Specifications

Detection	Range	LDL (3σ/24h)
CH_4 in N_2	0 – 8 ppm	1.6 ppb
CH ₄ in He	0 – 5 ppm	1.1 ppb
CH ₄ in Ar	0 – 7 ppm	1.4 ppb
CH ₄ in H ₂	0 – 8 ppm	1.6 ppb
CH ₄ in O ₂	0 – 6 ppm	1.1 ppb

Features and Benefits

- Part-per-billion detection limits
- Calibration-free with zero drift
- Fast speed of response
- No consumables or maintenance
- Multiple detection ranges available

Applications

- UHP Gas quality control
- Industrial gas QC
- Air separation units
- Gas standard preparation

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4-20mA analog, Modbus TCP (optional)

Gas Type

Options & Accessories

- Serani Max interface software
- Speed+ performance upgrade
- Environmental enclosure

See Product Brochure for more details

HALO 3 HF

This analyzer specializes in monitoring hydrogen fluoride (HF) impurities down to sub-ppb levels in fluorinated specialty gases, as well as common inert bulk gases.

Available Background Gases

 $N_2 \cdot He \cdot SF_6 \cdot NF_3 \cdot C_x F_v$

Select Specifications

(see **Product Brochure** for more)

Detection	Range	LDL (3σ/24h)
HF in N ₂	0 – 5 ppm	0.4 ppb
HF in He	0 – 1.3 ppm	0.4 ppb
HF in SF ₆	0 – 8 ppm	1.2 ppb
HF in NF ₃	0 – 7.5 ppm	0.6 ppb
HF in CF ₄	0 – 6 ppm	0.8 ppb

HF Detection

Features and Benefits

- Sub-part-per-billion detection limits
- Calibration-free with zero drift
- Fast speed of response
- No consumables or maintenance

Applications

- UHP Gas quality control
- Fluorocarbon chemistry
- Semiconductor specialty gas
- Gas standard preparation

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4-20mA analog, Modbus TCP (optional)

Options & Accessories

- Serani Max interface software
- Speed+ performance upgrade
- Environmental enclosure

HALO 3 HCI

High sensitivity, fast speed of response and maximum ease of use make this system ideal for detecting trance hydrogen chloride (HCI) in various industrial and research

Available Background Gases

 $N_2 \cdot H_2 \cdot CDA$

applications.

Specifications

Detection	Range	LDL (3σ/24h)
HCl in N ₂	0 – 20 ppm	1.0 ppb
HCl in CDA	0 – 20 ppm	1.0 ppb
HCl in H ₂	0 – 10 ppm	1.0 ppb

Detection HCI

Features and Benefits

- Part-per-billion detection limits
- Calibration-free with zero drift
- Fast speed of response
- No consumables or maintenance

Applications

- UHP Gas quality control
- CEM standard preparation
- Fuel-cell hydrogen analysis
- Research & development
- High-purity gas systems
- Gas mixtures

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4-20mA analog, Modbus TCP (optional)

Gas Type

Options & Accessories

Gas Type

- Serani Max interface software
- Speed+ performance upgrade
- Environmental enclosure

See Product Brochure for more details

IND

HALO 3 CO₂

This analyzer offers two different ranges to detect trace carbon dioxide (CO₂) for bulk gas applications.

Available Background Gases

 N_2

Specifications

Detection	Range	LDL (3σ/24h)
CO ₂ in N ₂ (low range)	0 – 12 ppm	8 ppb
CO ₂ in N ₂ (high range)	0 – 1500 ppm	250 ppb

Detection CO₂

Features and Benefits

- Part-per-billion detection limits
- Calibration-free with zero drift
- Fast speed of response
- No consumables or maintenance
- Two detection ranges available

Applications

- UHP Gas quality control
- Industrial gas QC
- Air separation units
- Certified reference materials and calibration gases
- Research & development
- Fuel-cell hydrogen analysis
- Syngas and fuel gas

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4-20mA analog, Modbus TCP (optional)

Options & Accessories

- Serani Max interface software
- Speed+ performance upgrade
- Environmental enclosure

HALO 3 CH₂O

This model detects trace amounts of formaldehyde in the low-ppb range. It is ideal for the preparation of CH₂O air quality gas standards and the analysis of fuel-cell hydrogen.

Available Background Gases

 $N_2 \cdot H_2$

Specifications

Detection	Range	LDL (3σ/24h)
CH ₂ O in N ₂	0 – 40 ppm	5 ppb
CH ₂ O in H ₂	0 – 40 ppm	6 ppb

Detection CH₂O

- Features and Benefits
 - Part-per-billion detection limits
 - Calibration-free with zero drift
 - Fast speed of response
 - No consumables or maintenance

Applications

- UHP Gas quality control
- Industrial gas QC
- Fuel-cell hydrogen analysis
- Gas standard preparation
- Research & development
- Syngas and fuel gas

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4-20mA analog, Modbus TCP (optional)

Gas Type

Options & Accessories

- Serani Max interface software
- Speed+ performance upgrade
- Environmental enclosure

See Product Brochure for more details

HALO 3 D₂O/HDO

Deuterium (D_2) is used in various applications from research to the manufacturing of optical fibers. Moisture impurities in D_2 are therefore a combination of the heavy water isotopes D_2O and HDO. This analyzer is designed to detect traces of both molecules.

Available Background Gases

 $N_2 \cdot D_2 (^2H_2)$

Specifications

Detection	Range	LDL (3σ/24h)
D ₂ O in D ₂	0 – 20 ppm	3 ppb
D ₂ O in N ₂	0 – 50 ppm	7 ppb
HDO in D ₂	0 – 30 ppm	5 ppb
HDO in N ₂	0 – 40 ppm	6 ppb

Detection

Features and Benefits

- Part-per-billion detection limits
- Calibration-free with zero drift
- Fast speed of response
- No consumables or maintenance

Applications

- Research & development
- Optical fiber manufacturing
- Semiconductor fabrication
- Healthcare & pharmaceuticals

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4-20mA analog, Modbus TCP (optional)

Options & Accessories

- Serani Max interface software
- Speed+ performance upgrade
- Environmental enclosure

HALO LP H₂O

The HALO LP is designed for the detection of trace moisture in hydrides, such as ammonia, phosphine and arsine, which are used in the production of LEDs and semiconductor devices.

Available Background Gases

 $N_2 \cdot He \cdot Ar \cdot H_2 \cdot NH_3 \cdot PH_3 \cdot$ AsH₃ · NO

Select Specifications

(see **Product Brochure** for more)

Detection	Range	LDL (3σ/24h)
H_2O in NH_3	0 – 20 ppm	9 ppb
H ₂ O in PH ₃	0 – 10 ppm	9 ppb
H_2O in N_2	0 – 6 ppm	1.0 ppb
H ₂ O in NO	0 – 100 ppm	16 ppb
H ₂ O in AsH ₃ *	0 – 10 ppm	5 ppb

^{*}Detection in arsine requires special model

Detection H₂O

Features and Benefits

- Part-per-billion detection limits
- Calibration-free with zero drift
- Fast speed of response
- No consumables or maintenance
- Low-pressure operation for interference-free detection

Applications

- High-brightness LED production
- Semiconductor specialty gas
- UHP ammonia QC
- MOCVD

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4-20mA analog, Modbus TCP (optional)

Gas Type

Options & Accessories

Gas Type

- Serani Max interface software
- Speed+ performance upgrade
- Environmental enclosure
- Requires vacuum pump

See Product Brochure for more details

HALO RP H₂O

This HALO RP model detects moisture impurities in chambers and semiconductor process tools down to 50 Torr of pressure in various background gases, incl. purge, cleaning and process gases.

Available Background Gases

 $N_2 \cdot He \cdot Ar \cdot H_2 \cdot CO \cdot NH_3 \cdot PH_3 \cdot$ AsH₃ · HCl

Select Specifications

(see **Product Brochure** for more)

Detection	Range	LDL (3σ/24h)
H_2O in N_2	0 – 20 ppm	1.5 ppb
H ₂ O in H ₂	0 – 20 ppm	1.5 ppb
H ₂ O in HCl	0 – 6 ppm	1.0 ppb
H ₂ O in PH ₃	0 – 25 ppm	3 ppb
H ₂ O in AsH ₃	0 – 10 ppm	5 ppb

*Detection in arsine requires special model

H₂O Detection

Features and Benefits

- Part-per-billion detection limits
- Calibration-free with zero drift
- Fast speed of response
- No consumables or maintenance
- · Large selection of background gases

Applications

- Epitaxy
- MOCVD

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4-20mA analog, Modbus TCP (optional)

Options & Accessories

- Serani Max interface software
- Requires vacuum pump
- Corrosion-resistant model

HALO RP HF

This HALO RP model detects hydrogen fluoride impurities in low-pressure chambers and semiconductor process tools down

Available Background Gases

to 50 Torr of pressure.

 $N_2 \cdot BF_3$

Specifications

Detection	Range	LDL (3σ/24h)
HF in N_2	0 – 10 ppm	0.75 ppb
HF in BF ₃	0 – 13 ppm	0.9 ppb

*Arsine detection requires special model

Detection

Features and Benefits

- Sub-part-per-billion detection limits
- Calibration-free with zero drift
- Fast speed of response
- No consumables or maintenance

Applications

- Epitaxy
- MOCVD

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4-20mA analog, Modbus TCP (optional)

Options & Accessories

- Serani Max interface software
- Requires vacuum pump

See Product Brochure for more details

HALO QRP

This HALO QRP is designed to monitor moisture impurities in state-of-the-art semiconductor process tools at pressures as low as 1 Torr.

Available Background Gases

 $N_2 \cdot He \cdot Ar \cdot H_2 \cdot HCl$

Specifications

Detection	Range	LDL (3σ/24h)
H ₂ O	0 – 12 mTorr _{pp} (1200 ppm @ 10 Torr)	1 μTorr _{pp} (100 ppb @ 10 Torr)

Detection H₂O

- Part-per-billion detection limits
- Calibration-free with zero drift
- No consumables or maintenance
- Works over a wide pressure range from 1 Torr to 1000 Torr

Applications

- Epitaxy
- Atomic Layer Deposition (ALD)
- MOCVD

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4-20mA analog, Modbus TCP (optional)

Options & Accessories

- Serani Max interface software
- Requires vacuum pump
- Corrosion-resistant model

HALO H₂O in N₂O

This analyzer specializes on detecting moisture impurities in high-purity nitrous oxide (N2O), but also offers ppb detection limits in common bulk gases.

Available Background Gases

 $N_2 \cdot He \cdot Ar \cdot H_2 \cdot O_2 \cdot N_2O$

Specifications

Detection	Range	LDL (3σ/24h)
H_2O in N_2O	0 – 20 ppm	7.5 ppb
H_2O in N_2	0 – 20 ppm	2.2 ppb
H ₂ O in Ar	0 – 6 ppm	1.0 ppb
H ₂ O in He	0 – 3 ppm	0.5 ppb
H_2O in H_2	0 – 12 ppm	1.9 ppb
H_2O in O_2	0 – 8 ppm	1.2 ppb
H_2O in N_2 H_2O in Ar H_2O in He H_2O in H_2	0 – 20 ppm 0 – 6 ppm 0 – 3 ppm 0 – 12 ppm	2.2 ppb 1.0 ppb 0.5 ppb 1.9 ppb

- Part-per-billion detection limits
- Calibration-free with zero drift
- No consumables or maintenance
- Can be used in N₂O, but also in bulk gases

Applications

- Gas standards preparation
- Medical gas
- · Quality control for process gas or bulk gas systems

Communication Interfaces

Ethernet, USB, RS-232, RS-485. 4-20mA analog, Modbus TCP (optional)

Gas Type

Options & Accessories

Gas Type

- Serani Max interface software
- Environmental enclosure

See Product Brochure for more details

IND

HALO H2

The HALO H2 analyzer enables optical detection of hydrogen impurities, making this analyzer perfect for a numerous applications.

Available Background Gases

 $N_2 \cdot He \cdot Ar$

Specifications

Detection	Range	LDL (3σ/24h)
H_2 in N_2	0 – 500 ppm	8 ppb
H ₂ in He	0 – 125 ppm	4 ppb
H ₂ in Ar	0 – 200 ppm	6 ppb

Features and Benefits

- Part-per-billion detection limits
- Calibration-free with zero drift
- Outstanding speed of response
- Virtually maintenance-free

Applications

Detection

- UHP Gas quality control
- Semiconductor bulk gas
- · Quality control for process gas or bulk gas systems

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4-20mA analog, Modbus TCP (optional)

Options & Accessories

- Serani Max interface software
- Requires N₂/O₂ mixture or CDA utility gas

Spark Series

Spark H₂O

Our lowest cost moisture analyzer, ideal for industrial process and quality control. The Spark makes CRDS analysis affordable, while maintaining high levels of performance.

Available Background Gases

 $N_2 \cdot He \cdot Ar \cdot H_2 \cdot O_2 \cdot CDA \cdot Ne \cdot$ $Kr \cdot Xe \cdot SF_6 \cdot CF_4$

Select Specifications

(see **Product Brochure** for more)

Detection	Range	LDL (3σ/24h)
H_2O in N_2	0 – 2000 ppm	12 ppb
H ₂ O in Ar	0 – 900 ppm	4.5 ppb
H_2O in H_2	0 – 1750 ppm	7.5 ppb
H ₂ O in O ₂	0 – 1000 ppm	6 ppb
H ₂ O in CDA	0 – 1800 ppm	10 ppb

Gas Type

Features and Benefits

- Part-per-billion detection limits
- Calibration-free with zero drift
- Outstanding speed of response
- No consumables or maintenance
- Affordable price
- Extremely wide dynamic range

Applications

- Industrial gas QC
- · Air separation units
- Truck fill measurements
- Fuel-cell hydrogen analysis
- Medical gases

Communication Interfaces

Ethernet, RS-232, 4-20mA analog, Modbus TCP (optional)

Options & Accessories

- Serani interface software
- Speed+ performance upgrade
- Linear fit mode
- Dew point measurement
- Environmental enclosure

See Product Brochure for more details

Spark H₂O in CO₂

Affordable & reliable, just like the Spark H₂O, with the additional capability of detecting sub-ppm moisture in pure CO₂. This analyzer is the ideal choice for industries requiring moisture analysis in CO₂ and inert gases.

Available Background Gases

$$N_2 \cdot He \cdot Ar \cdot H_2 \cdot O_2 \cdot CDA \cdot CO \cdot CO_2$$

Select Specifications

(see **Product Brochure** for more)

Detection	Range	LDL (3σ/24h)
H_2O in CO_2	0 – 600 ppm	550 ppb
H ₂ O in N ₂	0 – 500 ppm	7.5 ppb
H_2O in O_2	0 – 250 ppm	7.5 ppb
H ₂ O in CDA	0 – 450 ppm	7.5 ppb
H ₂ O in CO	0 – 480 ppm	7 ppb

Detection

H₂O

Features and Benefits

- Part-per-billion detection limits
- Calibration-free with zero drift
- Outstanding speed of response
- No consumables or maintenance
- Affordable price

Applications

- Industrial gas QC
- ASU process control
- Truck fill measurements
- Beverage CO₂ analysis
- Gas-cooled nuclear reactors

Communication Interfaces

Ethernet, RS-232, 4-20mA analog, Modbus TCP (optional)

Gas Type

Options & Accessories

- Serani interface software
- Speed+ performance upgrade
- Linear fit mode
- Dew point measurement
- Environmental enclosure

Spark Series

Spark CH₄

This analyzer is ideal for monitoring methane impurities in highly automated operations due to its affordable price, 24/7 operation, and zero maintenance.

Available Background Gases

 $N_2 \cdot He \cdot Ar \cdot H_2 \cdot O_2 \cdot CDA$

Specifications

Detection	Range	LDL (3σ/24h)
CH ₄ in N ₂	0 – 80 ppm	7.5 ppb
CH ₄ in Ar	0 – 70 ppm	6.5 ppb
CH ₄ in He	0 – 50 ppm	6 ppb
CH ₄ in H ₂	0 – 80 ppm	7.5 ppb
CH ₄ in O ₂	0 – 50 ppm	6 ppb
CH ₄ in CDA	0 – 80 ppm	7.5 ppb

Detection

Features and Benefits

- Part-per-billion detection limits
- Calibration-free with zero drift
- Outstanding speed of response
- No consumables or maintenance
- Affordable price

Applications

- Industrial gas QC
- Air separation units (safety and process control)
- Fuel-cell hydrogen analysis

Communication Interfaces

Ethernet, RS-232, 4-20mA analog, Modbus TCP (optional)

Gas Type

Options & Accessories

- Serani interface software
- Speed+ performance upgrade
- Environmental enclosure

See Product Brochure for more details

IND

Gas Type

Spark CO / Spark+ CO

This analyzer extends the affordable and reliable Spark series to the detection of trace carbon monoxide in a variety of bulk and industrial gases. Chose the Spark+for an improved detection limit.

Available Background Gases

 $N_2 \cdot He \cdot Ar \cdot H_2 \cdot O_2 \cdot CDA$

Specifications

Detection	Range	LDL* (3σ/24h)
CO in N ₂	0 – 2000 ppm	200/120 ppb
CO in O ₂	0 – 1800 ppm	180/110 ppb
CO in He	0 – 1800 ppm	180/110 ppb
CO in H ₂	0 – 2500 ppm	250/150 ppb
CO in CDA	0 – 2000 ppm	200/120 ppb
CO in Ar	0 – 1600 ppm	160/100 ppb

*Lower number is LDL for Spark+

Detection CC

Features and Benefits

- Part-per-billion detection limits
- Calibration-free with zero drift
- Outstanding speed of response
- No consumables or maintenance
- Affordable price

Applications

- Industrial gas QC
- ASU process control
- Truck fill measurements
- Fuel-cell hydrogen analysis

Communication Interfaces

Ethernet, RS-232, 4-20mA analog, Modbus TCP (optional)

Options & Accessories

- Serani interface software
- Speed+ performance upgrade
- Environmental enclosure

Spark Series

Spark CO₂

Carbon dioxide is a very common contaminant and can especially cause harm during when gases a liquefied. The Spark CO₂ offers an easy way to monitor this impurity before cryogenic transport and storage.

Available Background Gases

 $N_2 \cdot He \cdot Ar \cdot H_2 \cdot O_2 \cdot CDA$

Specifications

Detection	Range	LDL (3σ/24h)
CO_2 in N_2	0 – 1500 ppm	250 ppb
CO ₂ in H ₂	0 – 2000 ppm	400 ppb
CO_2 in O_2	0 – 1200 ppm	220 ppb
CO ₂ in CDA	0 – 1500 ppm	250 ppb
CO ₂ in He	0 – 1200 ppm	220 ppb

Detection CO₂

Features and Benefits

- Part-per-billion detection limits
- Calibration-free with zero drift
- Outstanding speed of response
- No consumables or maintenance
- Affordable price
- Wide dynamic range

Applications

- Industrial gas QC
- ASU process control
- Fuel-cell hydrogen analysis

Communication Interfaces

Ethernet, RS-232, 4-20mA analog, Modbus TCP (optional)

Gas Type

Options & Accessories

- Serani interface software
- Speed+ performance upgrade
- Environmental enclosure

See Product Brochure for more details

Spark C₂H₂

This analyzer provides a much more convenient way to monitor acetylene in many safetycritical application compared to cumbersome GCs and NDIRs.

Available Background Gases

 $N_2 \cdot O_2 \cdot CDA$

Specifications

Detection	Range	LDL (3σ/24h)
C_2H_2 in N_2	0 – 80 ppm	8 ppb
C_2H_2 in O_2	0 – 70 ppm	7 ppb
C ₂ H ₂ in CDA	0 – 80 ppm	8 ppb

Detection

Features and Benefits

- Part-per-billion detection limits
- Calibration-free with zero drift
- Outstanding speed of response
- No consumables or maintenance
- Affordable price

Applications

- Industrial gas QC
- · Air separation units (safety and process control)

Communication Interfaces

Ethernet, RS-232, 4-20mA analog, Modbus TCP (optional)

Options & Accessories

- Serani interface software
- Speed+ performance upgrade
- Environmental enclosure

T-I Max Series

T-I Max NH₃

The latest generation AMC monitor for the most advanced semiconductor fabs. This analyzer monitors ppt-levels of ammonia (NH₃) in real-time in the cleanroom and other micro environments.

Available Background Gases

Cleanroom Air \cdot N₂ \cdot CDA

Specifications

Range	LDL (3σ@100sec)
0 – 40 ppm	300 ppt
0 – 40 ppm	330 ppt
0 – 40 ppm	300 ppt
	0 – 40 ppm 0 – 40 ppm

Detection

Features and Benefits

- Part-per-trillion detection limits
- Calibration-free with zero drift
- Outstanding speed of response
- No maintenance

Applications

- Airborne Molecular Contaminants in cleanrooms
- FOUP and Pod monitoring
- Reticle storage
- Mobile AMC cart (w/ GO-cart)

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4-20mA analog, Modbus TCP (optional)

Gas Type

Options & Accessories

- Serani Max interface software
- GO-cart mobile solution
- External particle filter
- Requires vacuum pump

See Product Brochure for more details

T-I Max HF

The latest generation AMC monitor for the most advanced semiconductor fabs. This analyzer monitors ppt-levels of hydrogen fluoride (HF) a in real-time in the cleanroom and other micro environments.

Available Background Gases

Cleanroom Air · N₂ · CDA

Specifications

Detection	Range	LDL (3σ@100sec)
HF in Cleanroom Air	0 – 1 ppm	20 ppt
HF in N ₂	0 – 1 ppm	25 ppt
HF in CDA	0 – 1 ppm	20 ppt

HF Detection

Features and Benefits

- Part-per-trillion detection limits
- Calibration-free with zero drift
- Outstanding speed of response
- No maintenance

Applications

- Airborne Molecular Contaminants in cleanrooms
- FOUP and Pod monitoring
- Reticle storage
- Mobile AMC cart (w/ GO-cart)

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4-20mA analog, Modbus TCP (optional)

Options & Accessories

- Serani Max interface software
- GO-cart mobile solution
- External particle filter
- Requires vacuum pump

T-I Max Series

T-I Max HCl

The latest generation AMC monitor for the most advanced semiconductor fabs. This analyzer monitors ppt-levels of hydrogen chloride (HCl) in real-time in the cleanroom and other micro environments.

Available Background Gases

Cleanroom Air \cdot N₂ \cdot CDA

Specifications

Detection	Range	LDL (3σ@100sec)
HCl in Cleanroom Air	0 – 4 ppm	100 ppt
HCl in N ₂	0 – 4 ppm	110 ppt
HCl in CDA	0 – 4 ppm	100 ppt

Its excellent sensitivity allows this

analyzer to measure emissions

cement kilns and other sources

compliance tests. Models for six

different detections available.

Range

T-I Max CEM NH₃ 0 – 40 ppm

T-I Max CEM CH_4 0 – 20 ppm

Available Background Gases
Air · Diluted Stack Gas

from coal-fired power plants,

with high dilution ratio, thus

simplifying CEM setups and

Detection

HCI

Features and Benefits

- Part-per-trillion detection limits
- Calibration-free with zero drift
- Outstanding speed of response
- No maintenance

Applications

- Airborne Molecular Contaminants in cleanrooms
- FOUP and Pod monitoring
- Reticle storage
- Mobile AMC cart (w/ GO-cart)

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4-20mA analog, Modbus TCP (optional)

Gas Type

Options & Accessories

- Serani Max interface software
- GO-cart mobile solution
- External particle filter
- Requires vacuum pump

See Product Brochure for more details

T-I Max CEM

Specifications

Model

Detection

Features and Benefits

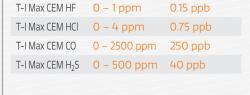
- Part-per-billion detection limits
- No heated sample lines needed for stack measurements
- Outstanding speed of response
- No maintenance
- Each model is designed for high specificity to its target detection without interference

Applications

- Continuous Emissions Monitoring (CEM)
- Air Quality Measurements

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4-20mA analog, Modbus TCP (optional)



Options & Accessories

- Serani Max interface software
- Dilution probe
- Linear fit mode
- Environmental enclosure
- Requires vacuum pump

See Product Brochure for more details

LDL (3σ/24h)

6 ppb

CO-rekt Series

CO-rekt CO

Featuring Class I, Div. 2 compliant housing, this analyzer is perfect for monitoring carbon monoxide (CO) impurities in hazardous processes, such as HyCO, SMR, and syngas production. Free from drift and insensitive to vibrations, the CO-rekt is an ideal replacement for NDIR instruments.

Available Background Gases

H₂ · Syngas

Specifications

Detection	Range	LDL (3σ/24h)
CO in H ₂	0 – 2000 ppm	150 ppb

Detection

Gas Type

Features and Benefits

- Part-per-billion detection limits
- Calibration-free with zero drift
- Outstanding speed of response
- No consumables or maintenance
- No vibration sensitivity
- Class I. Div. 2 certification

Applications

- Hydrogen production (HyCO and SMR)
- Syngas production

Communication Interfaces

Ethernet, RS-232, 4-20mA analog, Modbus TCP (optional)

Options & Accessories

- Serani interface software
- Speed+ performance upgrade
- Requires inert gas purge for hazardous locations

See Product Brochure for more details

CO-rekt CO₂

Offering the same advantages as the CO-rekt CO, this model measures monitoring carbon dioxide (CO₂) impurities in hydrogen, syngas, and similar gases. Free from drift and insensitive to vibrations, the CO-rekt is an ideal replacement for NDIR instruments.

Available Background Gases

H₂ · Syngas

Specifications

Detection	Range	LDL (3σ/24h)
CO ₂ in H ₂	0 – 1500 ppm	500 ppb

Detection CO₂ Features and Benefits

- Part-per-billion detection limits
- Calibration-free with zero drift
- Outstanding speed of response
- No consumables or maintenance
- No vibration sensitivity
- Class I. Div. 2 certification

Applications

- Hydrogen production (HyCO and SMR)
- Syngas production

Communication Interfaces

Ethernet, RS-232, 4-20mA analog, Modbus TCP (optional)

Options & Accessories

- Serani interface software
- Speed+ performance upgrade
- Requires inert gas purge for hazardous locations

CO-rekt Series

CO-rekt H₂O

Moisture is another important process impurity for HyCO, SMR, and syngas production. This analyzer combines all the great features of Tiger's renowned H₂O analyzers with a Class I, Div. 2 compliant housing. Two ranges are available for pre- and postpurification measurements.

Available Background Gases

H₂ · Syngas

Specifications

Detection	Range	LDL (3σ/24h)
H ₂ O in H ₂ (low range)	0 – 16 ppm	1.0 ppb
H ₂ O in H ₂ (high range)	0 – 400 ppm	6 ppb

Detection H₂O

Features and Benefits

- Part-per-billion detection limits
- Calibration-free with zero drift
- Outstanding speed of response
- No consumables or maintenance
- No vibration sensitivity
- Class I. Div. 2 certification

Applications

- Hydrogen production (HyCO and SMR)
- Syngas production

Communication Interfaces

Ethernet, RS-232, 4-20mA analog, Modbus TCP (optional)

Gas Type

Options & Accessories

- Serani interface software
- Speed+ performance upgrade
- Requires inert gas purge for hazardous locations

See Product Brochure for more details

CO-rekt CH₄

This system allows the user to detect trace amounts of methane (CH_μ) in hydrogen and syngas without the hassle of maintenance, calibration, and fuel gas, which are common with FID. We offer two detection ranges to cover various applications.

Available Background Gases

H₂ · Syngas

Specifications

Detection	Range	LDL (3σ/24h)
CH ₄ in H ₂ (low range)	0 – 8 ppm	1.6 ppb
CH ₄ in H ₂ (high range)	0 – 100 ppm	7 ppb

CH, Detection

Features and Benefits

- Part-per-billion detection limits
- Calibration-free with zero drift
- Outstanding speed of response
- No consumables or maintenance
- No vibration sensitivity
- Class I. Div. 2 certification

Applications

- Hydrogen production (HyCO and SMR)
- Syngas production

Communication Interfaces

Ethernet, RS-232, 4-20mA analog, Modbus TCP (optional)

Options & Accessories

- Serani interface software
- Speed+ performance upgrade
- Requires inert gas purge for hazardous locations

Prismatic—Multispecies Detection

Prismatic 2

This analyzers allows users to detect up to four trace molecules in a single gas stream. The Prismatic 2 is ideal for laboratory analysis or any other application where convenience and sample preservation are most important.

Available Background Gases

 $N_2 \cdot He \cdot Ar \cdot H_2 \cdot O_2 \cdot CDA$

Select Specifications

(see **Product Brochure** for more)

	Detection	Range	LDL (3σ/24h)
	H_2O in N_2	0 – 50 ppm	5 ppb
	H ₂ O in H ₂	0 – 50 ppm	5 ppb
	CH_4 in N_2	0 – 10 ppm	0.75 ppb
	CH ₄ in H ₂	0 – 10 ppm	0.75 ppb
	NH_3 in N_2	0 – 15 ppm	1.1 ppb
	NH ₃ in H ₂	0 – 6 ppm	0.8 ppb

Detection

Gas Type

Features and Benefits

- Part-per-billion detection limits
- Up to 4 simultaneous detections
- Outstanding speed of response
- No consumables or maintenance
- No vibration sensitivity

Applications

- Laboratory analysis
- Industrial gas QC
- Fuel-cell hydrogen analysis

Communication Interfaces

Ethernet, USB, RS-232, 0-5V and 0-20mA/4-20mA analog

Options & Accessories

Keyboard and mouse

ALOHA H₂O Series

ALOHA+ H₂O

This analyzers was specifically designed for the analysis of moisture in ultra-pure ammonia used for the production of high-brightness LEDs and other specialized semiconductor devices. It offers the lowest H₂O detection limit in the industry without background interference thanks to low pressure operation.

Available Background Gases

 $N_2 \cdot He \cdot Ar \cdot NH_3$

Specifications

Detection	Range	LDL (3σ/8h)	
H_2O in NH_3	0 – 20 ppm	3 ppb	
H ₂ O in N ₂	0 – 6 ppm	0.5 ppb	
H ₂ O in He	0 – 3 ppm	0.3 ppb	
H ₂ O in Ar	0 – 4 ppm	0.4 ppb	

Features and Benefits

- Single-digit part-per-billion detection limit in pure NH₃
- Calibration-free with zero drift
- No consumables or maintenance
- No vibration sensitivity

Applications

- High-brightness LED production
- Semiconductor specialty gas
- UHP ammonia QC

Communication Interfaces

Ethernet, USB, RS-232, RS-485, 4–20mA analog, Modbus TCP (optional)

Gas Type

Options & Accessories

- Serani Max interface software
- Speed+ performance upgrade
- Requires vacuum pump

Integration Solutions

GO-Cart

This mobile cart is designed to provide a flexible monitoring solution for semiconductor cleanrooms. Equipped with up to three T-I Max AMC monitors, the GO-cart can be deployed rapidly to monitor AMCs in critical locations.

Compatible Products

T-I Max Series AMC monitors

Features and Benefits

- Fits up to 3 T-I Max analyzers
- Central 10.4" touchscreen for controlling all installed analyzers
- Cleanroom-compatible materials
- Backup UPS available

Applications

- Airborne Molecular Contaminants in cleanrooms
- Mobile AMC monitoring

Environmental Enclosures

Some applications require analyzers to be installed outdoors or in unheated/uncooled instrument sheds. We offer custom-made enclosures for our analyzers to protect the system from environmental exposure and ensure reliable operation.

Compatible Products

Any HALO, Spark or T-I Max

Features and Benefits

- Custom-fit to your application and analyzer
- Heated/air-conditioned if needed
- Custom mounting options
- Available with virtually any Tiger Optics analyzer

Applications

- Unmanned Air Separation Units
- Environmental monitoring

Gas Test Panels

Tiger's analyzers operate so reliably that they require virtually no maintenance or calibration checks. Thus, customers ask sometimes how to verify the analyzer's performance. We offer several convenient gas test panels that can be connected to the analyzer to perform zero baseline and span validations.

Compatible Products

Any Tiger Optics analyzer

Features and Benefits

- Three different basic configurations to match your application
- Purifiers and permeation devices available as accessories

Applications

- Zero and span verification
- Analyzer testing

Software Products

Serani & Serani Max Interface Software

The Serani/Serani Max software allows full control of your analyzer from your desktop or laptop.

Compatible Products for Serani

HALO and ALOHA H₂O series analyzers w/o front USB port; Spark, CO-rekt and Tiger-i models

Compatible Products for Serani Max

HALO series and ALOHA+ H_2O analyzers ω / front USB port, all T-I Max models

Features and Benefits

- Monitoring and control of your Tiger analyzer remotely
- Data plotting and download to your computer
- Easy change of analyzer settings, such as gas type and data filter
- One-step data collection for "Performance Verification"

Speed+ Performance Upgrade

Intelligent data processing allows this software add-on to adjust the analyzer's response automatically and in real-time to deliver the best performance.

Compatible Products

Most new and existing Tiger Optics analyzers

Features and Benefits

- Boosts analyzer's speed of response without sacrificing sensitivity or measurement precision
- Software-only upgrade, no hardware changes required (with compatible analyzers)
- Analyze with Ease[™]—no manual adjustments required, Speed+ is fully automatic

Linear Fit Mode & Dew Point Measurement

The Linear Fit mode add-on allows the user to use custom calibration curves or adjust readings for a dilution ratio.

Dew Point Measurement enables users to switch H₂O readings from concentration to dew point.

Compatible Products

Most new and existing Tiger Optics analyzers

Features and Benefits

- Linear y = a x + b fit function permits user-defined calibration curves with programmable slope (a) and offset (b)
- Can directly display readings adjusted for a dilution factor
- Dew point capability allows easy comparison to dew point meters, such as chilled mirrors

Featured Services & Upgrades

Annual Performance Verification

This annual procedure ensures that your analyzer continues to meet its original specifications. This low cost process is 100% remote, no removal of the analyzer or expensive service visit are required. After completion, we issue a Verification Certificate testifying to the analyzer's correct operation.

Compatible Products

All Tiger Optics analyzers

Features and Benefits

- Easy, in-situ remote verification process, with no need to return the analyzer to the factory
- Up-to-date Verification Certificate to comply with your QA/QC standards
- Necessary data can be collected most easily via Serani or Serani Max interface software

Installation & Commissioning Package

Purchasing this package with your new Tiger Optics analyzer means that the unit is correctly installed at your site by Tiger Optics trained personnel. This service guarantees that your analyzer will have the best possible performance.

Compatible Products

All Tiger Optics analyzers

Features and Benefits

- Ensures correct installation to prevent future issues with your analyzer or sampling system
- Provides standard user training
- Gains you peace of mind that your analyzer will not experience issues related to improper installation
- Saves money in the long run by avoiding expensive repair or maintenance costs

Gas Library Additions

Our analyzers come with a variety of pre-calibrated background gases suitable for most users. To utilize the analyzer for more applications, additional background gases can be added, most of them via a simple software update.

Compatible Products

All Tiger Optics analyzers (availability of background gases varies by model)

Features and Benefits

- Use existing analyzer for new applications
- Measure in custom background gases used specifically in your facility
- Save money by purchasing additional background gas packages with your new analyzer

Tiger Optics Service

Tiger Optics' Service Capabilities & Offerings

Tiger Optics is renowned in the industry for its robust, low-maintenance systems and its excellent customer service!

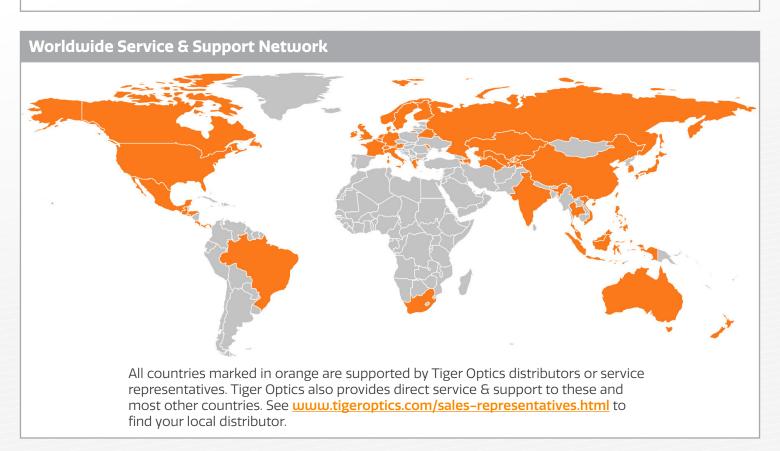
- Experienced factory staff & field service engineers
- Fast response time to inquiries and issues
- Worldwide service from our headquarters in Pennsylvania and through global service centers and distributors
- More than 90% of issues are resolved without sending the analyzer in for service
- Fast turn-around time for analyzers requiring factory service or repair
- Refreshes and upgrades available for many older systems to keep them in service

Custom Service Agreements

Annual services tailored to your requirements bundled into an attractive fixed price. Typical services may include:

- Initial installation & training
- Annual Performance Verification
- Quarterly on–site inspections by TO field service personnel
- Annual refresher training
- Spare parts agreement
- Rental/back-up analyzer(s)

Customer Training

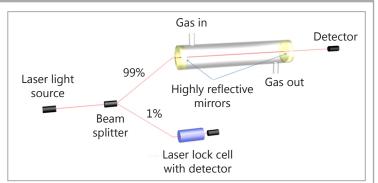

- Tailored training courses focusing on your specific needs
- Remote training via webinars
- Training at your site by experienced Tiger Optics personnel
- Extensive training at Tiger Optics headquarters

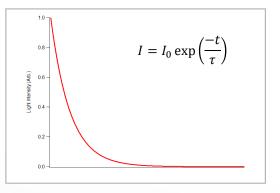
Application Support

- Support from experienced application engineers that help you through the process of selecting, purchasing, installing and optimizing your analyzer
- Sampling system optimization to obtain the best performance
- On-site setup inspection and consultation
- Rental units or spares to support your measurement needs

Calibration & Validation Services

- Factory-validation of your analyzer against NIST-traceable reference standards
- Calibrated rental units for on-site comparisons
- Easy & low-cost remote Performance Verification process





Overview of Cavity Ring-Down Spectroscopy (CRDS)

How CRDS Works

- I. A Continuous Wave (CW) laser emits a directed beam of light into a gas cell with two highly reflective mirrors on either end (cavity). The laser wavelength is chosen to be absorbed by the target molecule.
- 2. The light reflects back and forth between two ultra-high reflective mirrors multiple times, creating a total optical absorption path length of up to 100 kilometers.
- 3. Once the detector "sees" a sufficient level of light energy built up inside the cavity, the light source is turned off quickly, starting the measurement.
- 4. On each successive pass, a small amount of light or ring-down signal emits through the second mirror and is sensed by the light detector.
- 5. This exponential decay, or "ring-down" is recorded and is a direct measure of the losses inside the cavity, which includes the absorption of the target molecule.
- 6. The CRDS decay constant (ring-down time) is independent of laser fluctuations or external background and provides an absolute and extremely sensitive measurement of the target molecule's concentration.

Advantages of Tiger's CRDS Technology

High Accuracy,
Specificity & Stability

Rapid Deployment & Fast Speed of Response

Versatility & Ease of Use

Unparalleled Sensitivity

Outstanding Reliability

Exceptionally Low Cost of Ownership

Tigeoptics

www.tigeroptics.com